Gauge Transformations and Inverse Quantum Scattering with Medium-Range Magnetic Fields

نویسنده

  • Wolf Jung
چکیده

The time-dependent, geometric method for high-energy limits and inverse scattering is applied to nonrelativistic quantum particles in external electromagnetic fields. Both the Schrödingerand the Pauli equations in R2 and R 3 are considered. The electrostatic potential A0 shall be short-range, and the magnetic field B shall decay faster than |x|−3/2. A natural class of corresponding vector potentials A of medium range is introduced, and the decay and regularity properties of various gauges are discussed, including the transversal gauge, the Coulomb gauge, and the Griesinger vector potentials. By a suitable combination of these gauges, B need not be differentiable. The scattering operator S is not invariant under the corresponding gauge transformations, but experiences an explicit transformation. Both B and A0 are reconstructed from an X-ray transform, which is obtained from the highenergy limit of S. Here previous results by Arians are generalized to the medium-range situation. In a sequel paper, medium-range vector potentials are applied to relativistic scattering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Fe3O4@SiO2 Nanostructures via Inverse Micelle Method and Study of Their Magnetic Properties for Biological Applications

In this work, we report synthesis of superparamagnetic iron oxide nanoparticles at room temperature using microemulsion template phase consisting of cyclohexane, water, cetyltrimethylammonium bromide CTAB as cationic surfactant and butanol as a cosurfactant. Silica surface modification of the as prepared nanoparticles was performed by adding tetraethoxysilane TEOS to alkaline medium. The struct...

متن کامل

Preparation of Fe3O4@SiO2 Nanostructures via Inverse Micelle Method and Study of Their Magnetic Properties for Biological Applications

In this work, we report synthesis of superparamagnetic iron oxide nanoparticles at room temperature using microemulsion template phase consisting of cyclohexane, water, cetyltrimethylammonium bromide CTAB as cationic surfactant and butanol as a cosurfactant. Silica surface modification of the as prepared nanoparticles was performed by adding tetraethoxysilane TEOS to alkaline medium. The struct...

متن کامل

Classical Lattice Gauge Field with Hard Thermal Loops

We propose a formulation of gauge theories at finite temperature on a lattice in Minkowski space, including the effects of hard thermal loops on the dynamics of the long wavelength modes. Our approach is based on the dual classical limits of quantum fields as waves and particles in the infrared and ultraviolet limits, respectively, and exhibits manifest invariance under space-dependent lattice ...

متن کامل

The Time - Dependent Approach to Inverse Scattering ∗

In these lectures I give an introduction to the time-dependent approach to inverse scattering, that has been developed recently. The aim of this approach is to solve various inverse scattering problems with time-dependent methods that closely follow the physical (and geometrical) intuition of the scattering phenomena. This method has been applied to many linear and nonlinear scattering problems...

متن کامل

Quantum Electrodynamics on Noncommutative Spacetime

We propose a new method to quantize gauge theories formulated on a canonical noncommutative spacetime with fields and gauge transformations taken in the enveloping algebra. We show that the theory is renormalizable at one loop and compute the beta function and show that the spin dependent contribution to the anomalous magnetic moment of the fermion at one loop has the same value as in the commu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004